Long-term Sabbatical

A Critical Synthesis of Indirect Genetic Effects in Adaptive Evolution

PI(s): Mike Wade (Indiana University (Bloomington,IN))
Start Date: 1-Sep-2011
End Date: 30-Jun-2012
Keywords: evolutionary genetics, evolutionary theory, manipulative experiments, mathematical modeling, competition

The study of indirect genetic effects was initiated in the mid-1960’s by plant breeders as a means of understanding a paradox: the selection and breeding of the highest yielding individual plants leads to a decline in overall yield. The individual plants that become the largest are those that harvest more energy from the sun and more nutrients from the soil, but they do so at the expense of their neighbors. These types of competitive effects on neighbors have a genetic basis and are called “indirect genetic effects” or IGEs. The theory of IGEs has lead plant breeders to discard individual selection and adopt among-stand selection. Over the past decade, my lab has shown that IGEs play an important role in social cooperation and conflict, developmental biology, animal welfare, host-pathogen co-evolution and community ecology. I propose to synthesize these new developments in IGE theory and experiments in a scholarly monograph, since none currently exists. In addition, I plan to archive the primary data from a series of classic experiments on competition conducted by my former mentor, Thomas Park, and his students. These experiments are cited in introductory textbooks because they are among the best studies on competition, one of the primary ecological forcess shaping natural communities. Working with the IT staff of NESCent, I will be make the primary data from these studies available to researchers and students alike. This will provide a more dynamic view of the process of competitive exclusion and the stochasticity of outcomes that characterized Park’s findings.

Related products

PublicationsNews coverage