Short-term Visitor

Tools for measuring the magnitude and significance of convergent evolution

PI(s): Charles Stayton (Bucknell University)
Start Date: 27-May-2013
End Date: 14-Jun-2013
Keywords: computational modeling, evolutionary computation, evolutionary theory, macroevolution, software

Convergent evolution is recognized as a major component of the history of life. However, there are currently no widely-recognized, standard metrics for quantifying either the magnitude or the significance of convergent patterns. This gap prevents the synthesis of information derived from existing convergence studies and prevents future large-scale quantitative explorations of convergence throughout the tree of life. At NESCent I will develop a suite of metrics for quantifying the magnitude of convergence observed in a given phylogeny. I will also use evolutionary simulations to explore the expected amounts of convergence in data simulated on trees of varying shapes and sizes under a variety of evolutionary scenarios (e.g., random drift, adaptation towards one or more adaptive peaks). The metrics will be implemented in a series of routines written in R and freely distributed online; R routines for assessing the significance of convergent patterns using simulations will also be freely distributed. Results from the simulation studies will be published in open-access journals.